Investors’ update after VV17

27 November 2020
This document has been prepared by Avio S.p.A. ("Avio" or the “Company”). This document is being provided to you solely for your information and may not be reproduced or redistributed to any other person.

This document might contain certain forward-looking statements that reflect the Company’s management’s current views with respect to future events and financial and operational performance of the Company and its subsidiaries. These forward-looking statements are based on Avio’s current expectations and projections about future events. Because these forward-looking statements are subject to risks and uncertainties, actual future results or performance may differ materially from those expressed in or implied by these statements due to any number of different factors, many of which are beyond the ability of Avio to control or estimate. You are cautioned not to place undue reliance on the forward-looking statements contained herein, which are made only as of the date of this presentation. Avio does not undertake any obligation to publicly release any updates or revisions to any forward-looking statements to reflect events or circumstances after the date of this presentation. Any reference to past performance or trends or activities of Avio shall not be taken as a representation or indication that such performance, trends or activities will continue in the future. This document does not constitute an offer to sell or the solicitation of an offer to buy Avio’s securities, nor shall the document form the basis of or be relied on in connection with any contract or investment decision relating thereto, or constitute a recommendation regarding the securities of Avio.

This document may not be reproduced, redistributed or published in whole or in part without Avio’s authorization.
Established facts
• 1st stage (P80) nominal propulsion and separation
• 2nd stage (Z23) nominal propulsion and separation
• 3rd stage (Z9) nominal propulsion and separation
• 4th stage (AVUM) nominal ignition and propulsion
• At ~8:00 min. (242km altitude) degradation of trajectory observed, thrust vector control stroke anomaly
• At ~17:48 min. loss of telemetry
• At ~28:00 min. estimated splashdown

Root Cause Early Investigation
• Initial analyses point out to an integration mistake in the electrical actuation system of the 4th stage (AVUM)
• Independent Inquiry Commission setup* to:
 • Verify root cause of anomaly
 • Define corrective actions for return-to-flight
 • Maintain confidentiality until completion of investigation (targeted by 15th December)

(*) Established on 18 November 2020, chaired by ESA and Arianespace with participation of CNES and Avio
SOURCE: Arianespace, ESA
The way forward

• Support the Independent Inquiry Commission – conclusion targeted by 15th December

• Timely return-to-flight key priority for all involved stakeholders: Customers, Avio, Arianespace, ESA, CNES

• 2021 Vega manifest to be updated once corrective actions will be finalized by the Independent Inquiry Commission

• Continue in parallel the various development streams:
 • Vega C: Qualification Review kick-off imminent - preparing for Maiden Flight
 • Space Rider: First tranche of contract approved this week
 • Vega E: First tranche of contract approved this week
 • Space Exploration Propulsion Systems: new opportunities captured
 • Space Propulsion Test Facility in Sardinia: construction well in progress

• Execute on production activities:
 • P120 production ramp-up: 2021-22 volumes under definition
 • Increase ASTER-30 production

• FY 2020 Guidance confirmed
Strong support of Institutions for Vega return to flight

"Spazio: pieno supporto COMINT a lanciatore Vega"

"Settore dello spazio, dichiarazione congiunta Italia-Franzia"

Italia e Francia hanno inoltre rinnovato il pieno supporto ai programmi Ariane e Vega per l’accesso autonomo allo spazio, sottolineando per questo ultimo l’impegno comune per il ritorno al volo nei tempi più rapidi.

[...] Il Comitato Interministeriale per le politiche dello Spazio e l’Aerospazio, unitamente all’Agenzia Spaziale Italiana, garantiscono il pieno supporto ad Aivia per assicurare la continuità delle attività di accesso allo Spazio che rappresentano una capacità strategica per il Paese.

Comitato Interministeriale per le politiche relative allo spazio e all’aerospazio, 17 November 2020

SOURCE: Italian Government, Twitter
Space launchers worldwide show an average 6% failure rate.
After 17 launches, Vega is in line with the average performance

<table>
<thead>
<tr>
<th>Space Launchers’ performance of the first 17 launches</th>
<th>Average</th>
<th>Failure rate*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vega</td>
<td>15</td>
<td>2</td>
</tr>
<tr>
<td>Ariane 5</td>
<td>13</td>
<td>4</td>
</tr>
<tr>
<td>Falcon 9</td>
<td>16</td>
<td>1</td>
</tr>
<tr>
<td>Atlas 5</td>
<td>16</td>
<td>1</td>
</tr>
<tr>
<td>Electron</td>
<td>14</td>
<td>2</td>
</tr>
<tr>
<td>Soyuz**</td>
<td>15</td>
<td>2</td>
</tr>
<tr>
<td>Proton***</td>
<td>16</td>
<td>1</td>
</tr>
<tr>
<td>GSLV</td>
<td>8</td>
<td>5</td>
</tr>
<tr>
<td>PSLV</td>
<td>15</td>
<td>2</td>
</tr>
<tr>
<td>H2</td>
<td>14</td>
<td>3</td>
</tr>
</tbody>
</table>

*Includes also partial failures
**Soyuz 2-1b/Fregat
***Proton-M/Briz M

SOURCE: Elaboration on SpaceLaunchReport; Press Search
Space launchers show dispersion in performance over the first 20 launches before reaching full product maturity.

Launchers success over time

Maiden Flight L-6 L-11 L-16 L-21 L-26 L-31 L-36 L-41 L-46

Product introduction Product maturity

SOURCE: Elaboration on SpaceLaunchReport

* Soyuz 2-1b/Fregat
** Proton-M/Briz M
Comparison of recently developed launchers allows for some considerations

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Falcon 1 MF</td>
<td>1</td>
<td>2</td>
<td>4</td>
<td>3</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Falcon 9 MF</td>
<td>5</td>
<td>7</td>
<td>7</td>
<td>8</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Vega MF</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>6</td>
<td>8</td>
<td>11</td>
<td>13</td>
<td>14</td>
<td>15</td>
<td>17</td>
<td>18</td>
<td>19</td>
<td>14</td>
<td>15</td>
<td>17</td>
</tr>
</tbody>
</table>

- **Nr partial failures**
- **Nr total failures**
- **Nr successful launches**
Return-to-Flight timing varies depending on specific actions to be undertaken

Average* Return-to-Flight time in months

- **Average**: 8 months
- **Vega**: 14 months
- **Ariane 5**: 4 months
- **Falcon 9**: 5 months
- **Atlas 5**: 5 months
- **Electron**: 4 months
- **Soyuz**: 7 months
- **Proton**: 4 months
- **GSLV**: 20 months
- **PSLV**: 13 months
- **H2**: 7 months

*Average elapsed time for the R-t-F after the last two failures. Includes also partial failures

Soyuz 2-1b/Fregat

Proton-M/Briz M

SOURCE: Elaboration on SpaceLaunchReport; Press Search
Despite the many challenges in Space Launch, private investments in the sector continues to increase rapidly.

Private sector investments in Space Ventures

Breakdown of cumulated 2009-2019 investments by sector (% of 26$ Bn)

(1) Annual non-governmental equity investment
Source: Elaboration on Space Angels Quarterly Investment Reports
The rise of satellite constellations confirms space launch capabilities to be an indispensable and strategic capability

- 955 satellites already launched in LEO
- In October 2020 antennas for Beta testing of Starlink delivered to end-users
- Agreements in place with US Army and Microsoft Azure for connection services
- Granted the FCC authorization to launch >3,000 satellites in LEO by 2030
- $ 10 Bn of total investments
- Target to provide direct internet access to Amazon customers
- Different size and resolution Earth Observation (both optical and Radar) satellites constellations already active in LEO
- Launched in total >150 satellites since first launch in 2008
- New LEO constellation to deliver internet connectivity
- First demonstration satellite launched in 2018
- Planned a total of > 100 sats and potentially up to 300

SOURCE: Institutional websites, Press search
Launchers’ reliability study peer group composition

<table>
<thead>
<tr>
<th>Launcher</th>
<th>Number of flights</th>
<th>LEO Capacity (t)</th>
<th>Maiden Flight</th>
<th>Last failure*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vega</td>
<td>17</td>
<td>1,5</td>
<td>2012</td>
<td>2020</td>
</tr>
<tr>
<td>Ariane 5</td>
<td>109</td>
<td>20</td>
<td>1996</td>
<td>2018</td>
</tr>
<tr>
<td>Falcon 9</td>
<td>100</td>
<td>13</td>
<td>2010</td>
<td>2016</td>
</tr>
<tr>
<td>Atlas 5</td>
<td>86</td>
<td>14</td>
<td>2002</td>
<td>2007</td>
</tr>
<tr>
<td>Electron</td>
<td>16</td>
<td>0,3</td>
<td>2017</td>
<td>2020</td>
</tr>
<tr>
<td>Soyuz 2-1b/Fregat</td>
<td>46</td>
<td>4,4</td>
<td>2006</td>
<td>2017</td>
</tr>
<tr>
<td>Proton-M/Briz M</td>
<td>96</td>
<td>23</td>
<td>2001</td>
<td>2015</td>
</tr>
<tr>
<td>GSLV</td>
<td>13</td>
<td>8</td>
<td>2001</td>
<td>2010</td>
</tr>
<tr>
<td>PSLV</td>
<td>51</td>
<td>1,8</td>
<td>1993</td>
<td>2003</td>
</tr>
<tr>
<td>H2</td>
<td>51</td>
<td>15</td>
<td>1994</td>
<td></td>
</tr>
</tbody>
</table>

*Includes also partial failures

SOURCE: Elaboration on SpaceLaunchReport; Press Search
Vega is currently showing performance in line with the market average.

Launchers’* reliability over time

*Benchmark includes Vega, Ariane 5, Falcon 9, Atlas 5, Proton-M/Briz M, Soyuz 2.1/Fregat, Electron, H2, PSLV, GSLV

SOURCE: Elaboration on SpaceLaunchReport; Press Search